Download [PDF] April 2012 CAIE P1 Mark Schemes 1112 Mathematics Cambridge Lower Secondary Checkpoint

File Information


Filename: [PDF] April 2012 CAIE P1 Mark Schemes 1112 Mathematics Cambridge Lower Secondary Checkpoint.pdf
Filesize: 2.05 MB
Uploaded: 03/08/2021 16:01:46
Keywords:
Description: Download file or read online CAIE Cambridge lower secondary checkpoint past exam paper Mathematics 1112/01/A/M/12 April/May 2012 mark schemes paper 1 - Cambridge Assessment International Education.
Downloads: 10

File Preview

Download Urls


Short Page Link

https://www.edufilestorage.com/2Y3

Full Page Link

https://www.edufilestorage.com/2Y3/PDF_April_2012_CAIE_P1_Mark_Schemes_1112_Mathematics_Cambridge_Lower_Secondary_Checkpoint.pdf

HTML Code

<a href="https://www.edufilestorage.com/2Y3/PDF_April_2012_CAIE_P1_Mark_Schemes_1112_Mathematics_Cambridge_Lower_Secondary_Checkpoint.pdf" target="_blank" title="Download from eduFileStorage.com"><img src="https://www.edufilestorage.com/cache/plugins/filepreviewer/1411/pdf/150x190_middle_46f4e7862b1eb5bd4935adbbba5d79e8.jpg"/></a>

Forum Code

[url=https://www.edufilestorage.com/2Y3/PDF_April_2012_CAIE_P1_Mark_Schemes_1112_Mathematics_Cambridge_Lower_Secondary_Checkpoint.pdf][img]https://www.edufilestorage.com/cache/plugins/filepreviewer/1411/pdf/150x190_middle_46f4e7862b1eb5bd4935adbbba5d79e8.jpg[/img][/url]
Download file
[PDF] April 2012 CAIE P1 Mark Schemes 1112 Mathematics Cambridge Lower Secondary Checkpoint [PDF]

[PDF] April 2012 CAIE P1 Mark Schemes 1112 Mathematics Cambridge Lower Secondary Checkpoint.pdf | Plain Text


ilililllililfl UNI\,€RSIry OF CAMBRIDGE INTERNATIONAL EXAMINATIONS CENTRE .E .E C€ndid€t.s .mmr on rh. atu*tion Papei Addhion.lMaian*: C*ooeti@ttndlumenrd I@im parer 1112t01 READ THESE INSIRUCTONS FIRST Wite yolr Cenre numb6r, €ndldaia numb€r and n.m€ on .ll lha Mrk you hand w l€ in daB blue or blac* pen. You may !e a sofi p€ndl lor any diaoEms, !6ph3 or Dugh softho. Do nol us. staphs, pap8r d ps, highlight$, d@ or @reo.tjon iuid. DO I{OT WRITE IN ANY &qR@DES, l,lo CALCULATOR ALLOWED. Yd sholld .hN all you N*ing in fl6 b@klel. rh€ tunbs ol m'ks is gi€n in trckols I I"l ''.€nd ol@d' qu$tlon or pad Th6 ioEl numbd ot mttr td this p€pe is 50, 3 f 1' 2l Gl nM*frdl BRrDcr tlY r.@do"d E*i-dN J Thk d@denr M.'6b ol 13 prl.t d paga6 and 3 blank pages. L

lil]tililil]ilililIil|tiltilff il11ll 1 This slph shows the number ofpakets ofc.isps that were sold in one week. l6 t4 12 l0 8 6 4 2 0 (r) How ndy borc packeb ofche€se wft sld tto Packels ofP&P.ik crisps? II (b) which flavow \@ twie s polu hr s salr€d? ltl Lc*--.

rillllffi$iltfltilll1fllililfllilil (r) (h) (!) At 10 pm the lempenture is 2'C. At midnight lhe tempelntuft has fallen by 3'C. What h the temporatue at midniglt? Tbe t€npenturc in afie€zeris l5'C. The t€npmtw in the fi@z€r increag by 3'C. Work out the temperature in the &€eer no*. s09 sqglr I Egs nl Ill 4 r€cip.lists the ingrcdida n€eded !o bake 24 caks. (b) J@ma mak€s 4E cakes. worl out hov nuh flou she rc€ds- .i------------------------....................... c tll Luca hrs 7 eggs and pldty ofthe olher inS.edimts. work our the t'dimu nMb€r ofcakes [e 6 nake. nl L:*--. r'"-*c

-ci--EF----=- fi||tiltiluiltililtilililtil . 4 Choose orc oftbs wo.rls to @oplete oach sellence. CB E ct H H I 6 likely ftis that lbe day after W€tues.lay is Sunday. My teachtr cbms a numbr berwn otre ud oDe hundred. Oar I wiu gues lhe nmber i,mcdy. Unlikely InpGsible A p€ckag€ is deliver.d 3 holls 25 bilule8 after it is colle.ied. Il is oll6tEd ar l5 39. Al whal tine is th€ !6ck!se deliveFd? 0l Ill II] a=2b-c Find ti€ valE ofz wtd (r) ,=lland a=3 (b) ,= 12 ard c:-"4 b*""'. tll

hs left aflr burng the t$le. mffiilffiilmilfft| 7 Tido is shopping at a ftrniture slore, (.) He ha! $36010 $end- LIe buls a lable for $204.99 Wo* out how much money be f1t tll $ $ s Wo* out tlle oost of4 nirro$ at $35.99 eac}. 'fte price is Fduc€d by 2s% h a !ale. Wod( out the rd. Dri@ ofthe bed. ffi o) (c) t21 E3 I ! 'I F.il*c l=""".*

trl ilrilffiffilNlm[ru]il (.) Compleie this table ofvalu€s for the gnph X= 4r-2 (b) Use you lable ofvalues ro dnw rhe gmph ol I ' -'Lr 2 i -.:::I l,'::l; l-:.' ; , . l-' ,-i :':-. .t.,..........., 1 .-;, l'-;i 1....:.......!-.! l: ! :: i;tii -i,':_''l-!_''': ri;i: 'r- -!.. l--! -.: i i. i i i ....:.....i..... i.....i....i ,.i-i--,.,.i'.i . -r'''!' r I -:"..---.'-.' -1 :11- i-i-.!.-;''- !.-....i.... :.''-: ... i'': i'' i 0 9 8 7 6 5 4 3 2 I .; i ' :: ,. i:ril ::.: l. l i i' *-j--:- :''i !.'i-i'- l.-.r --r :- :t,:: trl -z -l 0 I 2 2 -6 t-r**'

ffiflflilil!lilffiilllllil|til 9 Complel€ the following statements. (r) 0.75m s flt fll nl tll (b) L357ks (c) 4{X}0ke (d) 2.5n'? tou6 tll t1l t21 l0 Complele rhis tlble ofequivelmt fractions, d@imals and per@tag6. fte fint rcw is dorc for you. (!) 2.59 x 04 t1 (b) 3 t oa75 37.5% 43% 0.09 I .*-. 44.4 + 1.2 &! r'"."*jJ

T il]lil]frililmilillflr 12 Tte sketch shows a triansle ,rc. fi C9 t* k9 E; 011 ,, = 7 crL c, = l0cm add angle ABc = 32o. Dnw Eiangle,4rCa@urely. rhe firc cd has b€io dra"n .ccuFtely fm you. c t l2l b"*-" I

lmililffiIffitil1il lJ Ch@ dEs a line CD. c (s,2) Point Ch.s the ceordinai$ (5 , 2). Point D t6 the o-ordntate! (9 , 5). Point Mtu tlle midpoint 01tll6 line CD. Work oul the co-ordinatls of the point 14 14 (r) Wnl! down all $F frctots of l8 (b) Write 54 a! a Droduct ofib Drime ftctors. D (9,5) M=( I I2l Irl 121 b*."-. r'"-*c

ffillmHll 15 use the infonn tionltat 22.1 x 32.5 - 71E.25 to wrtt dorn the an$,ttE to the followins qucstions t0 (tl 22.1x 32s= o) 71825 = 22.t = (c, 2.21 x 3.25=

- ililililililflttilffiilililil l6 (r) wdte [re Etio 8 : O) , On a shool trip the ntio of Therc re 30 childrq or the work out the nmher of.du adulB lo chil&en is E E ! E I $ E t I I l:5 lt1 121 Wort out rhe followio& ciw your asc$ 4 fflctions in lheir snrdert form. at rl*22 trl t2l r'-*C

18 Solve rbe simultaneous equri@. NilTilIHTII 19 (r) wortod 7t+2! t\+2t 3l l9 4.2+ 5 x l.l O) P'n orc p.ll ofbturcb in t\F.tlNd,Ntion to n'te it 6riet. lE+6+3x7=14 t3l tu Il

ililllIrffiil][ffitililffililtfrflt 20 Civcn that r is a wbote 13 numbet work out th€ values of x wh,ch etisry thls 4 Pui a.ine mund the con€ct arswe.. 2,3 2,3,4 5,5.7.8 2l A spinner contains five stim nunbered I ro 5. Ir is noa a fair spinner. Josef mak6 a table !o show th6 probabilities oflhe spioner tanding m each of the t,4 2 3 4 5 Prob luty 0.4 o.2 0.t The probability that the lpinftr le& on 2 is hllf the pobatility thai it land! on 5, Complet€ the table to show all ofrhe prcbabitities. & Ill I2l Ls*"*.